Variety of valence bond states formed of frustrated spins on triangular lattices based on a two-level system Pd(dmit)2.

نویسندگان

  • Masafumi Tamura
  • Reizo Kato
چکیده

Recent studies on the physical properties of the triangular system based on the Pd(dmit)2 salts (dmit=1,3-dithiole-2-thione-4,5-dithiolate) are reviewed. Quantum chemical architectures of the Pd(dmit)2 molecule and its dimer are introduced with emphasis on the strong dimerization of a two-level system, which provides unique physical properties of the salts. The magnetic properties are outlined in view of the magneto-structural correlation specific to the frustrated spin systems. Some newly discovered ground states and their origins are discussed, for which the valence bond formation plays a key role. Among them, the two-level structure is crucial for the novel charge-separated state found in two salts. The valence bond ordering, similar to the spin-Peierls transition, has been found in a two-dimensional frustrated spin system. The physical aspects and possible relation to the pressure-induced superconductivity are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mott transition in a valence-bond solid insulator with a triangular lattice.

We have investigated the Mott transition in a quasi-two-dimensional Mott insulator EtMe{3}P[Pd(dmit){2}]{2} with a spin-frustrated triangular-lattice in hydrostatic pressure and magnetic-field [Et and Me denote C2H5 and CH3, respectively, and Pd(dmit){2} (dmit=1,3-dithiole-2-thione-4,5-dithiolate,dithiolate) is an electron-acceptor molecule]. In the pressure-temperature (P-T) phase diagram, a v...

متن کامل

Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements

In frustrated magnetic systems, long-range ordering is forbidden and degeneracy of energy states persists, even at extremely low temperatures. Under certain conditions, these systems form an exotic quantum spin-liquid ground state, in which strongly correlated spins fluctuate in the spin lattices. Here we investigate the thermodynamic properties of an anion radical spin liquid of EtMe(3)Sb[Pd(d...

متن کامل

Emergence of superconductivity, valence bond order, and Mott insulators in Pd[(dmit)2] based organic salts.

The EtMe(3)P and EtMe(3)Sb triangular organic salts are distinguished from other Pd[(dmit)(2)] based salts, as they display valence bond and no long-range order, respectively. Under pressure, a superconducting phase is revealed in EtMe(3)P near the boundary of valence bond order. We use slave-rotor theory with an enlarged unit cell to study competition between uniform and broken translational s...

متن کامل

Theory of Valence-bond Lattice on Spin Lattices*

Quantum spin-lattice systems in low dimensions exhibit a variety of interesting zero-temperature phases, some of which show non-classical (i.e., non-magnetic) long-range orders, such as dimer or trimer valence-bond order. These symmetry-breaking systems with localized valence bonds are referred to as valence-bond lattices (VBL) in this article. A review of our systematic microscopic formalism b...

متن کامل

Magnetic Study of Pressure-Induced Superconductivity in the [Pd(dmit)_{2}] Salt with Spin-Gapped Ground State

Static magnetic measurements have been applied for the pressure-induced superconducting state in the P21=m phase of EtMe3P[Pd(dmit)2]2 (Et = C2H5, Me = CH3 and dmit 2 = 1,3-dithiol-2-thione-4,5dithiolate, C3S5 2 ), which exhibits valence bond (VB) ordering with a spin gap at ambient pressure. Evidence for bulk superconductivity is given. The pressure dependence of the transition temperature (Tc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science and technology of advanced materials

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2009